Clustering

Outline

- Microarrays
- Hierarchical Clustering
- K-Means Clustering
- Corrupted Cliques Problem
- CAST Clustering Algorithm

Applications of Clustering

- Viewing and analyzing vast amounts of biological data as a whole set can be perplexing
- It is easier to interpret the data if they are partitioned into clusters combining similar data points.

Inferring Gene Functionality

- Researchers want to know the functions of newly sequenced genes
- Simply comparing the new gene sequences to known DNA sequences often does not give away the function of gene
- For 40% of sequenced genes, functionality cannot be ascertained by only comparing to sequences of other known genes
- Microarrays allow biologists to infer gene function even when sequence similarity alone is insufficient to infer function.

Microarrays and Expression Analysis

- Microarrays measure the activity (expression level) of the genes under varying conditions/time points
- Expression level is estimated by measuring the amount of mRNA for that particular gene
 - A gene is active if it is being transcribed
 - More mRNA usually indicates more gene activity

Microarray Experiments

- Produce cDNA from mRNA (DNA is more stable)
- Attach phosphor to cDNA to see when a particular gene is expressed
- Different color phosphors are available to compare many samples at once
- Hybridize cDNA over the micro array
- Scan the microarray with a phosphor-illuminating laser
- Illumination reveals transcribed genes
- Scan microarray multiple times for the different color phosphor's

www.bioalgorithms.info

www.affymetrix.com

www.bioalgorithms.info

Using Microarrays (cont'd)

- Green: expressed only from control
- Red: expressed only from experimental cell
- Yellow: equally expressed in both samples
- Black: NOT expressed in either control or experimental cells

Microarray Data

- Microarray data are usually transformed into an intensity matrix (below)
- The intensity matrix allows biologists to make correlations between diferent genes (even if they are dissimilar) and to understand how genes functions might be related

	Time:	Time X	Time Y	Time Z
Intensity (expression	Gene 1	10	8	10
level) of gene at	Gene 2	10	0	9
measured time	Gene 3	4	8.6	3
	Gene 4	7	8	3
	Gene 5	1	2	3

Clustering of Microarray Data

- Plot each datum as a point in N-dimensional space
- Make a distance matrix for the distance between every two gene points in the Ndimensional space
- Genes with a small distance share the same expression characteristics and might be functionally related or similar.
- Clustering reveal groups of functionally related genes

Clustering of Microarray Data (cont'd)

Time	1 hr	2 hr	3 hr		<i>g</i> 1	g_2	g_3	g_4	g_6	g_6	g_7	g_8	g_9	g_{10}
g_1	10.0	8.0	10.0	g_1	0.0	8.1	9.2	7.7	9.3	2.3	-5.1	10.2	6.1	7.0
g_2	10.0	0.0	9.0	g_2	8.1	0.0	12.0	0.9	12.0	9.5	10.1	12.8	2.0	1.0
g_3	4.0	8,5	3.0	g_3	9.2	12.0	0.0	11.2	0.7	11.1	8.1	1.1	10.5	11.5
94	9.5	0.5	8.5	94	7.7	0.9	11.2	0.0	11.2	9.2	9.5	12.0	1.6	1.1
g_5	4.5	8.5	2.5	g_5	9.3	12.0	0.7	11.2	0.0	11.2	8.5	1.0	10.6	11.6
g_6	10.5	9.0	12.0	<i>9</i> 6	2.3	9.5	11.1	9.2	11.2	0.0	5.6	12.1	7.7	8.5
g_7	5.0	8,5	11.0	g_7	5.1	10.1	8.1	9.5	8.5	5.6	0.0	9.1	8.3	9.3
g_8	2.7	8.7	2.0	g_8	10.2	12.8	1.1	12.0	1.0	12.1	9.1	0.0	11.4	12.4
<i>g</i> 9	9.7	2.0	9.0	99	6.1	2.0	10.5	1.6	10.6	7.7	8.3	11.4	0.0	1.1
g_{10}	10.2	1.0	9.2	g_{10}	7.0	1.0	11.5	1.1	11.6	8.5	9.3	12.4	1.1	0.0

(a) Intensity matrix, I

(b) Distance matrix, d

(c) Expression patterns as points in three-dimentional space.

Homogeneity and Separation Principles

- Homogeneity: Elements within a cluster are close to each other
- Separation: Elements in different clusters are further apart from each other
 - ...clustering is not an easy task!

Bad Clustering

This clustering violates both Homogeneity and Separation principles

Good Clustering

This clustering satisfies both Homogeneity and Separation principles

Clustering Techniques

- Agglomerative: Start with every element in its own cluster, and iteratively join clusters together
- Divisive: Start with one cluster and iteratively divide it into smaller clusters
- Hierarchical: Organize elements into a tree, leaves represent genes and the length of the pathes between leaves represents the distances between genes. Similar genes lie within the same subtrees

Hierarchical Clustering

Hierarchical Clustering (cont'd)

 Hierarchical Clustering is often used to reveal evolutionary history

Hierarchical Clustering Algorithm

4	
<u>1.</u>	<u>Hierarchical Clustering (d, n)</u>
2.	Form <i>n</i> clusters each with one element
3.	Construct a graph T by assigning one vertex to each cluster
4.	while there is more than one cluster
5.	Find the two closest clusters C_1 and C_2
6.	Merge C_1 and C_2 into new cluster C with $ C_1 + C_2 $ elements
7.	Compute distance from C to all other clusters
8.	Add a new vertex C to T and connect to vertices C_1 and C_2
9.	Remove rows and columns of d corresponding to C_1 and C_2
10.	Add a row and column to d corresponding to the new cluster C
11.	return T
	The eleventhese teleses a productorese meetring of

The algorithm takes a $n \times n$ distance matrix *d* of pairwise distances between points as an input.

Hierarchical Clustering Algorithm

<u>1.</u>	Hierarchical Clustering (d. n)
2.	Form <i>n</i> clusters each with one element
3.	Construct a graph T by assigning one vertex to each cluster
4.	while there is more than one cluster
5.	Find the two closest clusters C_1 and C_2
6.	Merge C_1 and C_2 into new cluster C with $ C_1 + C_2 $ elements
7.	Compute distance from C to all other clusters
8.	Add a new vertex C to T and connect to vertices C_1 and C_2
9.	Remove rows and columns of d corresponding to C_1 and C_2
10.	Add a row and column to d corrsponding to the new cluster C
11.	return T

Different ways to define distances between clusters may lead to different clusterings

Hierarchical Clustering: Recomputing Distances

 $d_{min}(C, C^*) = \min d(x,y)$ for all elements x in C and y in C^{*}

 Distance between two clusters is the smallest distance between any pair of their elements

$$d_{avg}(C, C^*) = (1 / |C^*||C|) \sum d(x,y)$$

for all elements x in C and y in C^*

 Distance between two clusters is the average distance between all pairs of their elements

Squared Error Distortion

• Given a data point *v* and a set of points *X*, define the **distance** from *v* to *X*

d(v, X)

as the (Eucledian) distance from *v* to the *closest* point from *X*.

• Given a set of *n* data points $V = \{v_1 ... v_n\}$ and a set of *k* points *X*, define the **Squared Error Distortion**

$$d(V,X) = \sum d(v_i, X)^2 / n \qquad 1 \le i \le n$$

K-Means Clustering Problem: Formulation

- Input: A set, V, consisting of n points and a parameter k
- Output: A set X consisting of k points (*cluster* centers) that minimizes the squared error distortion d(V,X) over all possible choices of X

1-Means Clustering Problem: an Easy Case

- Input: A set, V, consisting of n points
- Output: A single points x (cluster center) that minimizes the squared error distortion d(V,x) over all possible choices of x

1-Means Clustering Problem: an Easy Case

- Input: A set, V, consisting of n points
- Output: A single points x (cluster center) that minimizes the squared error distortion d(V,x) over all possible choices of x

1-Means Clustering problem is easy.

However, it becomes very difficult (NP-complete) for more than one center.

An efficient *heuristic* method for K-Means clustering is the Lloyd algorithm

K-Means Clustering: Lloyd Algorithm

<u>1.</u> Lloyd Algorithm

5.

- ^{2.} Arbitrarily assign the *k* cluster centers
- ^{3.} while the cluster centers keep changing
- ^{4.} Assign each data point to the cluster C_i corresponding to the closest cluster representative (center) $(1 \le i \le k)$
 - After the assignment of all data points, compute new cluster representatives according to the center of gravity of each cluster, that is, the new cluster representative is

 $\sum v \setminus |C|$ for all v in C for every cluster C

*This may lead to merely a locally optimal clustering.

An Introduction to Bioinformatics Algorithms

www.bioalgorithms.info

www.bioalgorithms.info

Conservative K-Means Algorithm

- Lloyd algorithm is fast but in each iteration it moves many data points, not necessarily causing better convergence.
- A more conservative method would be to move one point at a time only if it improves the overall clustering cost
 - The smaller the clustering cost of a partition of data points is the better that clustering is
 - Different methods (e.g., the squared error distortion) can be used to measure this clustering cost

K-Means "Greedy" Algorithm

- <u>1.</u> <u>ProgressiveGreedyK-Means(k)</u>
- ^{2.} Select an arbitrary partition *P* into *k* clusters
- ^{3.} while forever
- ^{4.} bestChange ß 0
- ^{5.} for every cluster *C*
- ^{6.} for every element *i* not in *C*
- ^{7.} if moving *i* to cluster *C* reduces its clustering cost
- ^{8.} if $(cost(P) cost(P_{i a C}) > bestChange$
- ^{9.} bestChange β cost(P) cost(P_{i à C})
- ^{10.} *i**ß*I*
- ^{11.} C^{*} ß C
- ^{12.} if bestChange > 0
- ^{13.} Change partition *P* by moving i^* to C^*
- ^{14.} else

^{15.} return *P*

Clique Graphs

- A clique is a graph with every vertex connected to every other vertex
- A clique graph is a graph where each connected component is a clique

Transforming an Arbitrary Graph into a Clique Graphs

 A graph can be transformed into a clique graph by adding or removing edges

Corrupted Cliques Problem

Input: A graph G

Output: The smallest number of additions and removals of edges that will transform *G* into a clique graph

Distance Graphs

- Turn the distance matrix into a distance graph
 - Genes are represented as vertices in the graph
 - Choose a distance threshold θ
 - If the distance between two vertices is below θ , draw an edge between them
 - The resulting graph may contain cliques
 - These cliques represent clusters of closely located data points!

Transforming Distance Graph into Clique Graph

The distance graph (threshold θ =7) is transformed into a clique graph after removing the two highlighted edges

 g_1 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0 q_2 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5 g_3 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1 g_4 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6 q_5 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5 $g_{\rm B}$ 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3 g_7 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4 q_8 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1 q_{2} 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0 q_{10}

(a) Distance matrix, ${\bf d}$ (distances shorter than 7 are shown in bold).

After transforming the distance graph into the clique graph, the dataset is partitioned into three clusters

Figure 10.6 The distance graph (b) for $\theta = 7$ is not quite a clique graph. However, it can be transformed into a clique graph (c) by removing edges (g_1, g_{10}) and (g_1, g_9) .

Heuristics for Corrupted Clique Problem

- Corrupted Cliques problem is NP-Hard, some heuristics exist to approximately solve it:
- CAST (Cluster Affinity Search Technique): a practical and fast algorithm:
 - **CAST** is based on the notion of genes *close* to cluster *C* or *distant* from cluster *C*
 - Distance between gene *i* and cluster *C*:

d(i,C) = average distance between gene *i* and all genes in C

Gene *i* is close to cluster *C* if d(*i*,*C*)< and distant otherwise

CAST Algorithm

- <u>1.</u> <u>CAST(S, G,)</u>
- ^{2.} P ß Ø
- ^{3.} while $S \neq \emptyset$
- ^{4.} V ß vertex of maximal degree in the distance graph G
- ^{5.} C ß {*v*}
- ^{6.} while a close gene *i* not in C or distant gene *i* in C exists
- ^{7.} Find the nearest close gene *i* not in *C* and add it to *C*
- ^{8.} Remove the farthest distant gene *i* in *C*
- ^{9.} Add cluster *C* to partition *P*
- ^{10.} SßS\C
- ^{11.} Remove vertices of cluster *C* from the distance graph *G*
- ^{12.} return P

S – set of elements, G – distance graph, - distance threshold

References

- http://ihome.cuhk.edu.hk/~b400559/ array.html#Glossaries
- http://www.umanitoba.ca/faculties/afs/plant_science/ COURSES/bioinformatics/lec12/lec12.1.html
- http://www.genetics.wustl.edu/bio5488/ lecture_notes_2004/microarray_2.ppt - For Clustering Example